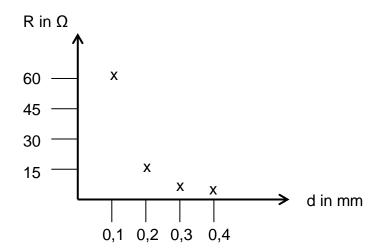

S. 91/A2 b)

R in Ω	15,3	32	44,4	61,5
Länge I in m	0,25	0,5	0,75	1,0



Hier kann man gut sehen, dass der Widerstand R von der Länge I abhängt. Verdoppelt sich I, verdoppelt sich auch R.

R~I

c)

R in Ω	61,5	15,3	6,6	3,8
Durchmes ser d in mm	0,1	0,2	0,3	0,4

Hier kann man gut sehen, dass sich der Widerstand R ändert, wenn der Durchmesser d größer wird. Allerdings halbiert sich nicht R, wenn d verdoppelt wird. R wird nur kleiner, wenn d größer wird. Die Elektronen Können sich wieder besser bewegen.

Es gilt daher: R ~ 1

A, wobei A hier für die Kreisfläche des Durchmessers steht.